This vignette lists the packages and model types exported by pmml, as well as data transformations and functions that extend the basic exporter functionality.
This package supports the following packages and model types:
neighbr
naiveBayes
nnet
Arima
ada
gbm
with “bernoulli”, “poisson”, and “multinomial”
distribution typesrandomForest
rpart
xgb.Booster
with “multi:softprob”, “multi:softmax”, and
“binary:logistic” objectivesThe following functions are used to transform input data.
xform_discretize
: discretize continuous values.xform_function
: apply a user-defined function to the
input values.xform_map
: map discrete values between input and
output.xform_min_max
: normalize continuous values.xform_norm_discrete
: normalize discrete values.xform_z_score
: apply z-score normalization to
continuous values.The general methodology is to first wrap the data with
xform_wrap
, and then perform transformations using the
above functions.
The following functions allow additional operations, such as creating specific nodes and adding attributes. For more information, check the documentation for each function.
add_attributes
: add attribute values to an existing
element in a given PMML file.add_data_field_attributes
: add attribute values to an
existing DataField element in a given PMML file.add_data_field_children
: add ‘Interval’ and ‘Value’
child elements to a given DataField element in a given PMML file.add_mining_field_attributes
: add attribute values to an
existing MiningField element in a given PMML file.add_output_field
: add Output nodes to a PMML
object.file_to_xml_node
: read in a file and parse it into an
object of type XMLNode.function_to_pmml
: convert an R expression to PMML.make_intervals
: create Interval elements to add to a
DataDictionary element.make_output_nodes
: add Output nodes to a PMML
object.make_values
: create Values element to add to a
DataDictionary element.